On the Betti and Tachibana Numbers of Compact Einstein Manifolds

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-formal compact manifolds with small Betti numbers

We show that, for any k ≥ 1, there exist non-formal compact orientable (k−1)-connected n-manifolds with k-th Betti number bk = b ≥ 0 if and only if n ≥ max{4k − 1, 4k + 3− 2b}.

متن کامل

Betti numbers of random manifolds

We study mathematical expectations of Betti numbers of configuration spaces of planar linkages, viewing the lengths of the bars of the linkage as random variables. Our main result gives an explicit asymptotic formulae for these mathematical expectations for two distinct probability measures describing the statistics of the length vectors when the number of links tends to infinity. In the proof ...

متن کامل

On the Betti Numbers of Irreducible Compact Hyperkähler Manifolds of Complex Dimension Four

The study of higher dimensional hyperkähler manifolds has attracted much attention: we have [Wk], [Bg1,2,3,4], [Fj1,2], [Bv1], [Vb1,2], [Sl1,2], [HS], [Huy], [Gu3,4,5] etc. It is evident that there are only a few known examples of these manifolds and the obvious question is: can we classify them as in the case of complex dimension 4? The Riemann-Roch formula plays an important role in the surfa...

متن کامل

Tight Combinatorial Manifolds and Graded Betti Numbers

In this paper, we study the conjecture of Kühnel and Lutz, who state that a combinatorial triangulation of the product of two spheres S×S with j ≥ i is tight if and only if it has exactly i+2j+4 vertices. To approach this conjecture, we use graded Betti numbers of Stanley–Reisner rings. By using recent results on graded Betti numbers, we prove that the only if part of the conjecture holds when ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics

سال: 2019

ISSN: 2227-7390

DOI: 10.3390/math7121210